Showing posts with label native diet. Show all posts
Showing posts with label native diet. Show all posts

Monday, May 7, 2012

Beyond Ötzi: European Evolutionary History and its Relevance to Diet. Part II

In previous posts, I described how Otzi was (at least in large part) a genetic descendant of Middle Eastern agriculturalists, rather than being purely descended from local hunter-gatherers who adopted agriculture in situ.  I also reviewed evidence showing that modern Europeans are a genetic mixture of local European hunter-gatherers, incoming agricultural populations from the Middle East, neanderthals, and perhaps other groups.  In this post, I'll describe the evidence for rapid human evolution since the end of the Paleolithic period, and research indicating that some of these changes are adaptations to the Neolithic (agricultural/horticultural/pastoral) diet.

Humans have Evolved Significantly Since the End of the Paleolithic

Evolution by natural selection leaves a distinct signature in the genome, and geneticists can detect this signature tens of thousands of years after the fact by comparing many genomes to one another.  A landmark paper published in 2007 by Dr. John Hawks and colleagues showed that humans have been undergoing "extraordinarily rapid recent genetic evolution" over the last 40,000 years (1).  Furthermore:
Read more »

Saturday, May 5, 2012

Media Appearances

Last October, I participated in a panel discussion organized by the Harvard Food Law Society in Boston.  The panel included Drs. Walter Willett, David Ludwig, Robert Lustig, and myself, with Corby Kummer as moderator.  Dr. Willett is the chair of the Harvard Department of Nutrition; Dr. Ludwig is a professor of nutrition and pediatrics at Harvard; Dr. Lustig is a professor of clinical pediatrics at UCSF; and Kummer is a food writer and senior editor for The Atlantic
Read more »

Saturday, April 28, 2012

Beyond Ötzi: European Evolutionary History and its Relevance to Diet. Part I

In the previous post, I explained that Otzi descended in large part from early adopters of agriculture in the Middle East or nearby.  What I'll explain in further posts is that Otzi was not a genetic anomaly: he was part of a wave of agricultural migrants that washed over Europe thousands of years ago, spreading their genes throughout.  Not only that, Otzi represents a halfway point in the evolutionary process that transformed Paleolithic humans into modern humans.

Did Agriculture in Europe Spread by Cultural Transmission or by Population Replacement?

There's a long-standing debate in the anthropology community over how agriculture spread throughout Europe.  One camp proposes that agriculture spread by a cultural route, and that European hunter-gatherers simply settled down and began planting grains.  The other camp suggests that European hunter-gatherers were replaced (totally or partially) by waves of agriculturalist immigrants from the Middle East that were culturally and genetically better adapted to the agricultural diet and lifestyle.  These are two extreme positions, and I think almost everyone would agree at this point that the truth lies somewhere in between: modern Europeans are a mix of genetic lineages, some of which originate from the earliest Middle Eastern agriculturalists who expanded into Europe, and some of which originate from indigenous hunter-gatherer groups including a small contribution from neanderthals.  We know that modern-day Europeans are not simply Paleolithic mammoth eaters who reluctantly settled down and began farming. 

Read more »

Tuesday, April 24, 2012

Lessons From Ötzi, the Tyrolean Ice Man. Part III

There are two reasons why I chose this time to write about Otzi.  The first is that I've been looking for a good excuse to revisit human evolutionary history, particularly that of Europeans, and what it does and doesn't tell us about the "optimal" human diet.  The second is that Otzi's full genome was sequenced and described in a recent issue of Nature Communications (1).  A "genome" is the full complement of genes an organism carries.  So what that means is that researchers have sequenced almost all of his genes. 

Read more »

Tuesday, April 17, 2012

Lessons From Ötzi, the Tyrolean Ice Man. Part II

Otzi's Diet

Otzi's digestive tract contains the remains of three meals.  They were composed of cooked grains (wheat bread and wheat grains), meat, roots, fruit and seeds (1, 2).  The meat came from three different animals-- chamois, red deer and ibex.  The "wheat" was actually not what we would think of as modern wheat, but an ancestral variety called einkorn.

Isotope analysis indicates that Otzi's habitual diet was primarily centered around plant foods, likely heavily dependent on grains but also incorporating a variety of other plants (3).  He died in the spring with a belly full of einkorn wheat.  Since wheat is harvested in the fall, this suggests that his culture stored grain and was dependent on it for most if not all of the year.  However, he also clearly ate meat and used leather made from his prey.  Researchers are still debating the quantity of meat in his diet, but it was probably secondary to grains and other plant foods. It isn't known whether or not he consumed dairy.

Read more »

Tuesday, April 10, 2012

Lessons From Ötzi, the Tyrolean Ice Man. Part I

This is Otzi, or at least a reconstruction of what he might have looked like.  5,300 years ago, he laid down on a glacier near the border between modern-day Italy and Austria, under unpleasant circumstances.  He was quickly frozen into the glacier.  In 1991, his slumber was rudely interrupted by two German tourists, which eventually landed him in the South Tyrol Museum of Archaeology in Italy. 

Otzi is Europe's oldest natural human mummy, and as such, he's an important window into the history of the human species in Europe.  His genome has been sequenced, and it offers us clues about the genetic history of modern Europeans.

Otzi's Story

Read more »

Wednesday, July 20, 2011

Weight Gain and Weight Loss in a Traditional African Society

The Massas is an ethnic group in Northern Cameroon that subsists mostly on plain sorghum loaves and porridge, along with a small amount of milk, fish and vegetables (1, 2).  They have a peculiar tradition called Guru Walla that is only undertaken by men (2, 1):
Read more »

Thursday, June 2, 2011

Food Reward: a Dominant Factor in Obesity, Part V

Non-industrial diets from a food reward perspective

In 21st century affluent nations, we have unprecedented control over what food crosses our lips.  We can buy nearly any fruit or vegetable in any season, and a massive processed food industry has sprung up to satisfy (or manufacture) our every craving.  Most people can afford exotic spices and herbs from around the world-- consider that only a hundred years ago, black pepper was a luxury item.  But our degree of control goes even deeper: over the last century, kitchen technology such as electric/gas stoves, refrigerators, microwaves and a variety of other now-indispensable devices have changed the way we prepare food at home (Megan J. Elias.  Food in the United States, 1890-1945). 

To help calibrate our thinking about the role of food reward (and food palatability) in human evolutionary history, I offer a few brief descriptions of contemporary hunter-gatherer and non-industrial agriculturalist diets.  What did they eat, and how did they prepare it? 
Read more »

Tuesday, May 24, 2011

Healthy Skeptic Podcast

Chris Kresser has just posted our recent interview/discussion on his blog The Healthy Skeptic.  You can listen to it on Chris's blog here.  The discussion mostly centered around body fat and food reward.  I also answered a few reader questions.  Here are some highlights:
  • How does the food reward system work? Why did it evolve?
  • Why do certain flavors we don’t initially like become appealing over time?
  • How does industrially processed food affect the food reward system?
  • What’s the most effective diet used to make rats obese in a research setting? What does this tell us about human diet and weight regulation?
  • Do we know why highly rewarding food increases the set point in some people but not in others?
  • How does the food reward theory explain the effectiveness of popular fat loss diets?
  • Does the food reward theory tell us anything about why traditional cultures are generally lean?
  • What does cooking temperature have to do with health?
  • Reader question: How does one lose fat?
  • Reader question: What do I (Stephan) eat?
  • Reader question: Why do many people gain fat with age, especially postmenopausal women?
The podcast is a sneak preview of some of the things I'll be discussing in the near future.  Enjoy!

Sunday, December 5, 2010

Interview with a Kitavan

Kitava is a Melanesian island that has maintained an almost entirely traditional, non-industrial diet until very recently. It was the subject of a study by Dr. Staffan Lindeberg and colleagues, which I have written about many times, in which they demonstrated that Kitavans have a very low (undetectable) rate of heart attack, stroke, diabetes and overweight. Dr. Lindeberg described their diet as consisting mostly of yam, sweet potato, taro, cassava, coconut, fruit, fish and vegetables. Over the seven days that Dr. Lindeberg measured food intake, they ate 69% of their calories as carbohydrate, 21% as fat (mostly from coconut) and 10% as protein.

I recently received an e-mail from a Kitavan by the name of Job Daniel. He's working at the Papua New Guinea Institute of Medical Research in Madang, studying the social and economic impacts of malaria and related health issues in Papua New Guinea. He recalls many details of Dr. Lindeberg's visit to Kitava, which Dr. Lindeberg has confirmed are correct. Job generously offered to answer some of my questions about the traditional Kitavan diet. My questions are in bold, and his responses are below.

How many meals a day do Kitavans eat?
People on the island eat mostly two meals a day. But nowadays, breakfast is mainly comprised of tubers (yam and sweet potato and greens all cooked in coconut cream and salt) and dinner is the same with the inclusion of fish as protein most often. In between these two meals, lunch is seen as a light refreshment with fruits or young coconut only to mention these two popular ones. In between the morning and the evening, we mostly eat fruits as snack or lunch. Generally speaking, there are only two main meals per day, i.e breakfast and dinner.

Do Kitavans eat any fermented food?

There are fermented fruits and nuts like you've said for breadfruit, nuts, yams and not forgetting fish. We ferment them by using the traditional method of drying them over the fire for months. And this fermented foods last for almost one to two years without getting stale or spoiled. Food preservation is a skill inherited from our great grand fathers taking into consideration the island's location and availability of food. Foods such as bread fruit and fish are fermented and preserved to serve as substitutes to fresh food in times of trouble or shortage. Otherwise, they're eaten along the way.

Is this really fermentation or simply drying?
To your query about the fermentation methods we use, apart from drying food over the fire, we also use this method like the Hawaiians do with taro [poi- SJG]. For our case we bury a special kind of fruit collected from the tree and buried in the ground to ripen, which takes about 2 - 3 days. I don't really know the English name, but we call it 'Natu' in vernecular. There's also a certain nut when it falls from the tree, women collect them and peel off the rotten skin, then mumu [earth oven- SJG] them in the ground covered with leaves to protect them from burning from the extreme heat of the fire, both from the open fire on top and hot stones underneath. After a day, the nuts are removed from the mumu and loaded into very big baskets which are then shifted to the sea for fermentation. This takes a week (minimum) to ferment or be ready for consumption at last. After the fermentation period is over, i.e one week some days or two
weeks to be exact, then the nuts are finally ready for eating. The length of time it takes before the nuts are no longer edible is roughly one week.

What parts of the fish are eaten?
As islanders, we eat almost every creature and body part of a sea creature. Especially fish eggs, it is one of the favorites of children. They always prefer it burnt on the fire and consumed greedily. Every part of the fish is eaten except for the feces, gall bladder, bones and the scales.

Is food shortage really rare on Kitava?
Generally speaking it is rare. BUT sometimes we run out of food only if there is a drought and the sea is useless. Otherwise, we tend to use the preserved or fermented foods on the dryer in the kitchen. As you would understand, we have seasons and they affect the type and availability of food on the island. In the beginning of the year, we eat sweet potato, cassava and mostly tuna for protein. During mid year, before yam comes in to replace sweet potato and cassava, taro is then ready for harvest. And then yams are ready for harvesting so the food supply is continued on. OK when yams are harvested, some are eaten, some are stored away for reserve and seedlings. In this way, we don't run out food towards the end of the year before sweet potato would be ready for harvest. So as you can see, the food supply on the island is somewhat planned by our ancestral economists where it continues throughout the year without stopping.

Do Kitavans traditionally eat pork, and if so, how often?
We do eat pork but not that often because pork meat is chiefly regarded important on the island. We only eat pork on special occasions so I'd rather say that pork is only eaten occasionally. In most cases in the middle of the year when the yams are harvested (yam harvest celebrations and towards the end of the year for certain rites and activities). Otherwise the everyday meal is always topped with fish.

How long are infants breast fed on Kitava?
Women breast feed for a minimum of 2 years. But breast feeding is again determined by the size and health situation of the baby. If the baby is looking healthy and big, it is most likely that this baby would be adopted temporarily by someone else so as to be removed from breast milk after two years of age minimum. Child care nowadays is paramount as people start to realize the importance of health and hygiene in general. But Kitavans are well known in that part of the country for their hygiene practices. They also got the provincial and district awards for a 'clean community' in early 90s and right now, they still maintain their hygiene level and awareness.

Are there any other foods that are commonly eaten on Kitava that I might not be aware of?
Bananas, pineapple, corn and watermelons. For watermelon and corn, they are plentiful especially at this time of the year.

Thanks for your help, Job! I know many people will appreciate reading these responses.

Saturday, November 20, 2010

Glucose Tolerance in Non-industrial Cultures

Background

Glucose is the predominant blood sugar and one of the body's two main fuel sources (the other is fatty acids). Glucose, in one form or another, is also the main form of digestible dietary carbohydrate in nearly all human diets. Starch is made of long chains of glucose molecules, which are rapidly liberated and absorbed during digestion. Sucrose, or table sugar, is made of one glucose and one fructose molecule, which are separated before absorption.

Blood glucose is essential for life, but it can also be damaging if there is too much of it. Therefore, the body tries to keep it within a relatively tight range. Normal fasting glucose is roughly between 70 and 90 mg/dL*, but in the same individual it's usually within about 5 mg/dL on any given day. Sustained glucose above 160 mg/dL or so causes damage to multiple organ systems. Some people would put that number closer to 140 mg/dL.

The amount of glucose contained in a potato far exceeds the amount contained in the blood, so if all that glucose were to enter the blood at once, it would lead to a highly damaging blood glucose level. Fortunately, the body has a hormone designed to keep this from happening: insulin. Insulin tells cells to internalize glucose from the blood, and suppresses glucose release by the liver. It's released by the pancreas in response to eating carbohydrate, and protein to a lesser extent. The amount of insulin released is proportional to the amount of carbohydrate ingested, so that glucose entering the blood is cleared before it can accumulate.

Insulin doesn't clear all the glucose as it enters the bloodstream, however. Some of it does accumulate, leading to a spike in blood glucose. This usually doesn't exceed 130 mg/dL in a truly healthy person, and even if it approaches that level it's only briefly. However, diabetics have reduced insulin signaling, and eating a typical meal can cause their glucose to exceed 300 mg/dL due to reduced insulin action and/or insulin secretion. In affluent nations, this is typically due to type II diabetes, which begins as insulin resistance, a condition in which insulin is actually higher than normal but cells fail to respond to it.  The next step is the failure of insulin-secreting beta cells, which is what generally precipitates actual diabetes.

The precursor to diabetes is called glucose intolerance, or pre-diabetes. In someone with glucose intolerance, blood glucose after a typical meal will exceed that of a healthy person, but will not reach the diabetic range (a common definition of diabetes is 200 mg/dL or higher, 2 hours after ingesting 75g of glucose). Glucose tolerance refers to a person's ability to control blood glucose when challenged with dietary glucose, and can be used in some contexts as a useful predictor of diabetes risk and general metabolic health. Doctors use the oral glucose tolerance test (OGTT), which involves drinking 60-100g glucose and measuring blood glucose after one or two hours, to determine glucose tolerance.

Why do we care about glucose tolerance in non-industrial cultures?

One of the problems with modern medical research is that so many people in our culture are metabolically sick that it can be difficult to know if what we consider "normal" is really normal or healthy in the broader sense. Non-industrial cultures allow us to examine what the human metabolism is like in the absence of metabolic disease. I admit this rests on certain assumptions, particularly that these people aren't sick themselves. I don't think all non-industrial cultures are necessarily healthy, but I'm going to stick with those that research has shown have an exceptionally low prevalence of diabetes (by Western standards) and other "diseases of civilization" for the purposes of this post.

Here's the question I really want to answer in this post: do healthy non-industrial cultures with a very high carbohydrate intake have an excellent glucose tolerance, such that their blood glucose doesn't rise to a high level, or are they simply resistant to the damaging effects of high blood glucose?

The data

I'm going to start with an extreme example. In the 1960s, when it was fashionable to study non-industrial cultures, researchers investigated the diet and health of a culture in Tukisenta, in the highlands of Papua New Guinea. The eat practically nothing but sweet potatoes, and their typical daily fare is 94.6 percent carbohydrate. Whether or not you believe that exact number, their diet was clearly extraordinarily high in carbohydrate. They administered 100g OGTTs and measured blood glucose at one hour, which is a very stringent OGTT. They compared the results to those obtained in the 1965 Tecumseh study (US) obtained by the same method. Here's what they found (1):
Compared to Americans, in Tukisenta they had an extraordinary glucose tolerance at all ages. At one hour, their blood glucose was scarcely above normal fasting values, and glucose tolerance only decreased modestly with age. In contrast, in Americans over 50 years old, the average one-hour value was around 180 mg/dL!

Now let's take a look at the African Bantu in the Lobaye region of the Central African Republic. The Bantu are a large ethnic group who primarily subsist on a diverse array of starchy foods including grains, beans, plantains and root crops. One hour after a 100g OGTT, their blood glucose was 113 mg/dL, compared to 139 mg/dL in American controls (2). Those numbers are comparable to what investigators found in Tukisenta, and indicate an excellent glucose tolerance in the Bantu.

In South America, different investigators studied a group of native Americans in central Brazil that subsist primarily on cassava (a starchy root crop) and freshwater fish. Average blood glucose one hour after a 100g OGTT was 94 mg/dl, and only 2 out of 106 people tested had a reading over 160 mg/dL (both were older women) (Western Diseases: Their Emergence and Prevention, p. 149). Again, that indicates a phenomenal glucose tolerance by Western standards.

I have to conclude that high-carbohydrate non-industrial cultures probably don't experience damaging high blood glucose levels, because their glucose tolerance is up to the task of shuttling a huge amount of glucose out of the bloodstream before that happens.

Not so fast...

Now let's turn our attention to another study that may throw a wrench in the gears. A while back, I found a paper containing OGTT data for the !Kung San (also called the Bushmen), a hunter-gatherer group living in the Kalahari desert of Africa. I reported in an earlier post that they had a good glucose tolerance. When I revisited the paper recently, I realized I had misread it and in fact, their glucose tolerance was actually pretty poor.

Investigators administered a 50g OGTT, half what the other studies used. At one hour, the San had blood glucose readings of 169 mg/dL, compared to 142 mg/dL in Caucasian controls (3)! I suspect a 100g OGTT would have put them close to the diabetic range.

Wait a minute, these guys are hunter-gatherers living the ancestral lifestyle; aren't they supposed to be super healthy?? While I was mulling this over, I recalled a discussion on Peter's blog hyperlipid where commenters were discussing their diabetic OGTT values while on a low-carbohydrate diet. Apparently, carbohydrate refeeding for a few days generally reverses this and allows a normal OGTT in most people. It turns out this effect has been known for the better part of a century.

So what were the San eating? The study was conducted in October of 1970. The San diet changes seasonally, however their main staple food is the mongongo nut, which is mostly fat and which is available year-round (according to The !Kung San: Men, Women and Work in a Foraging Society). Their carbohydrate intake is generally low by Western standards, and at times of the year it is very low. This varies by the availability of other foods, but they generally don't seem to relish the fibrous starchy root crops that are available in the area, as they mostly eat them when other food is scarce. Jean-Louis Tu has posted a nice analysis of the San diet on BeyondVeg (4). Here's a photo of a San man collecting mongongo nuts from The !Kung San: Men, Women and Work in a Foraging Society:

What did the authors of the OGTT study have to say about their diet? Acknowledging that prior carbohydrate intake may have played a role in the OGTT results of the San, they made the following remark:
a retrospective dietary history (M. J. Konner, personal communication, 1971) indicated that the [San], in fact, consumed fairly large amounts of carbohydrate-rich vegetable food during the week before testing.
However, the dietary history was not provided, nor has it been published, so we have no way to assess the statement's accuracy or what was meant by "fairly large amounts of carbohydrate-rich vegetable food." Given the fact that the San diet generally ranges from moderately low to very low in carbohydrate, I suspect they were not getting much carbohydrate as a percentage of calories. Looking at the nutritional value of the starchy root foods they typically ate in appendix D of The !Kung San: Men, Women and Work in a Foraging Society, they are fibrous and most contain a low concentration of starch compared to a potato for example. The investigators may have been misled by the volume of these foods eaten, not realizing that they are not as rich in carbohydrate as the starchy root crops they are more familiar with.

You can draw your own conclusions, but I think the high OGTT result of the San probably reflect a low habitual carbohydrate intake, and not pre-diabetes. I have a very hard time believing that this culture wasn't able to handle the moderate amount of carbohydrate in their diet effectively, as observers have never described diabetic complications among them.

Putting it all together

This brings me to my hypothesis. I think a healthy human body is extraordinarily flexible in its ability to adapt to a very broad range of carbohydrate intakes, and adjusts glucose tolerance accordingly to maintain carbohydrate handling in a healthy range. In the context of a healthy diet and lifestyle (from birth), I suspect that nearly anyone can adjust to a very high carbohydrate intake without getting dangerous blood glucose spikes. A low carbohydrate intake leads to lower glucose handling and better fat handling, as one would expect. This can show up as impaired glucose tolerance or diabetes on an OGTT, but that does not necessarily reflect a pathological state in my opinion.

Every person is different based on lifestyle, diet, personal history and genetics. Not everyone in affluent nations has a good glucose tolerance, and some people will never be able to handle starch effectively under any circumstances. The best way to know how your body reacts to carbohydrate is to test your own post-meal blood glucose using a glucose meter. They are inexpensive and work well. For the most informative result, eat a relatively consistent amount of carbohydrate for a week to allow your body to adapt, then take a glucose measurement 1 and 2 hours after a meal. If you don't eat much carbohydrate, eating a potato might make you think you're diabetic, whereas after a week of adaptation you may find that a large potato does not spike your blood glucose beyond the healthy range.

Exercise is a powerful tool for combating glucose intolerance, as it increases the muscles' demand for glucose, causing them to transport it out of the blood greedily after a meal. Any exercise that depletes muscle glycogen should be effective.


* Assuming a typical carbohydrate intake. Chris Kresser recently argued, based on several studies, that true normal fasting glucose for a person eating a typical amount of carbohydrate is below 83 mg/dL. Low-carbohydrate eating may raise this number, but that doesn't necessarily indicate a pathological change. High-carbohydrate cultures such as the Kitavans, Aymara and New Guineans tend to have fasting values in the low 60s to low 70s. I suspect that a very high carbohydrate intake generally lowers fasting glucose in healthy people. That seems to be the case so far for Chris Voigt, on his diet of 20 potatoes a day. Stay tuned for an interview with Mr. Voigt in early December.

Tuesday, November 16, 2010

Impressions from the Wise Traditions Conference

I spent last weekend at the Weston A. Price Foundation Wise Traditions conference in King of Prussia, PA. Here are some highlights:

Spending time with several people in the diet-health community who I’ve been wanting to meet in person, including Chris Masterjohn, Melissa McEwen and John Durant. John and Melissa are the public face of the New York city paleo movement. The four of us spent most of the weekend together tossing around ideas and making merry. I’ve been corresponding with Chris quite a bit lately and we’ve been thinking through some important diet-health questions together. He is brimming with good ideas. I also got to meet Sally Fallon Morell, the founder and president of the WAPF.

Attending talks. The highlight was Chris Masterjohn’s talk “Heart Disease and Molecular Degeneration: the New Paradigm”, in which he described his compelling theory on oxidative damage and cardiovascular disease, among other things. You can read some of his earlier ideas on the subject here. Another talk I really enjoyed was by Anore Jones, who lived with an isolated Inuit group in Alaska for 23 years and ate a mostly traditional hunter-gatherer diet. The food and preparation techniques they used were really interesting, including various techniques for extracting fats and preserving meats, berries and greens by fermentation. Jones has published books on the subject that I suspect would be very interesting, including Nauriat Niginaqtuat, Plants that We Eat, and Iqaluich Niginaqtuat, Fish that We Eat. The latter is freely available on the web here.

I attended a speech by Joel Salatin, the prolific Virginia farmer, writer and agricultural innovator, which was fun. I enjoyed Sally Fallon Morell’s talk on US school lunches and the politics surrounding them. I also attended a talk on food politics by Judith McGeary, a farmer, attorney and and activist, in which she described the reasons to oppose or modify senate bill 510. The gist is that it will be disproportionately hard on small farmers who are already disfavored by current regulations, making high quality food more difficult to obtain, more expensive or even illegal. It’s designed to improve food safety by targeting sources of food-borne pathogens, but how much are we going to have to cripple national food quality and farmer livelihood to achieve this, and will it even be effective? I don’t remember which speaker said this quote, and I’m paraphrasing, but it stuck with me: “I just want to be able to eat the same food my grandmother ate.” In 2010, that’s already difficult to achieve. Will it be impossible in 2030?

Giving my own talk. I thought it went well, although attendance was not as high as I had hoped. The talk was titled “Kakana Dina: Diet and Health in the Pacific Islands”, and in it I examined the relationship between diet and health in Pacific island cultures with different diets and at various stages of modernization. I’ve covered some of this material on my blog, in my posts on Kitava, Tokelau and sweet potato eating cultures in New Guinea, but other material was new and I went into greater detail on food habits and preparation methods. I also dug up a number of historical photos dating back as far as the 1870s.

The food. All the meat was pasture-raised, organic and locally sourced if possible. There was raw pasture-raised cheese, milk and butter. There was wild-caught fish. There were many fermented foods, including sauerkraut, kombucha and sourdough bread. I was really impressed that they were able to put this together for an entire conference.

The vendors. There was an assortment of wholesome and traditional foods, particularly fermented foods, quality dairy and pastured meats. There was an entire farmer’s market on-site on Saturday, with a number of Mennonite vendors selling traditional foods. I bought a bottle of beet kvass, a traditional Russian drink used for flavor and medicine, which was much better than the beet kvass I’ve made myself in the past. Beets are a remarkable food, in part due to their high nitrate content—beet juice has been shown to reduce high blood pressure substantially, possibly by increasing the important signaling molecule nitric oxide. I got to meet Sandeep Agarwal and his family, owners of the company Pure Indian Foods, which domestically produces top-quality pasture-fed ghee (Indian-style clarified butter). They now make tasty spiced ghee in addition to the plain flavor. Sandeep and family donated ghee for the big dinner on Saturday, which was used to cook delicious wild-caught salmon steaks donated by Vital Choice.

There were some elements of the conference that were not to my taste. But overall I’m glad I was able to go, meet some interesting people, give my talk and learn a thing or two.